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FOREWORD

This report was prepared by the Department of Metallurgy, Mechanics
and Materials Science, Michigan State University, East Lansing, Michigan
48824, under Contract No. F33615-78-C-5123, '"Coldworked Hole Stress
Analysis." The contract, which was initiated under Project No. 2418,
Task 24180305, was administered under the direction of the Air Force

Materials Laboratory, Metals Behavior Branch (AFWAL/MLLN), by Dr. Robert
C. Donath, Project Engineer.

The research reported herein was submitted by Dr. Gary Cloud who
was the Principal Investigator, and covers work conducted during the
period June 1978 to February 1980.
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SUMMARY

The experimental results in this investigation are restricted to the
strain maps along the thickness near the edge of the hole while the specimen
is being coldworked and after coldwork is completed. The strain was measured
by a moiré technique which gave information about the radial, hoop, and
transverse normal strain fields near the edge of the hole as a function of
distance from the specimen surface.

The moiré fringe pattern near the edge of the hole along the thickness
changed when the tapered mandrel was pulled down. The diametral expansion
was found not to be uniform along the thickness. The expansion inside the
specimen was smaller than on the surface.

While tne 3pecimen was being coldworked, the strain was different along
the thickness depending on the thickness of each specimen, and the shape
of the mandrel. The strains were not uniform along the specimen thickness,
and the measured strains on both sidés were not quite the same. The strain
in the radial direction inside the specimen was smaller than on the surface
after the specimen was coldworked. The maximum strain occurred near the
| edge of the hole and decreased with increasing distance from the hole. The
strain in tae z-direction was tension near the top surface and changed to
compression along the thickness; the maximum occurred near the midplane, and
the strain decreased towards the botrom. After passing through a minimum,
the transverse strain increased in compression again near the bottom. The
hoop strain was a maximum on the top surface, decreased to a minimum at the
midplane and appeared to increase towards the bottom surface.

The fact Fhat the radial normal strain in the interior of the specimen
on the hole boundary is small when compared with the surface strain is

troubling from the viewpoint of fatigue design with coldwork-type fasteners.

ix
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The creation of tensile transverse normal strain near the surface, {
{

) however, 1is potentially more of a problem. It is recognized, though, that

the transverse stress would be modified by installation of a fastener,

such as a bolt, which induces compression in the material.
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SECTION I

INTRODUCTION

Because they create areas of hizh stress and increase the number
of potential crack-initiation sites, holes often shorten the operational
life of structural components. It is important to develop better understanding
of crack initiation and growth from holes and also to devise techniques
for decreasing the probability for failure to begin at holes.

One approach to improving the fatigue performance of a component
containing a hole is to plastically expand the hole. Design procedures
for such expanded or coldworked holes are still in the early stages of ;
development. Progress has been impeded by lack of knowledge of the stress
and strain fields induced by plastic radial expansion. Pioneering efforts
by several investigators to obtain needed data and to develop design approaches
have been described by Cloud (1,2), and there is little need to review them
again here.

A program designed to develop an understanding of the behavior of
coldworked holes in the presence of plate edges, compressive loads and
adjacent fasteners has been described in detailed reports by Cloud and
Tipton (3) and by Cloud and Sula“.ana (4). A part of that program included
experiments to investigate the three-dimensional aspects of the strain field
near plastically enlarged holes. These experiments and the results are
described herein. It is useful to keep in mind, as this work is reviewed,
that this report is part of a program which produced two earlier reports
(3,4), and that all of these reports are related to one another.

The three-dimensional nature of the radial, hoop, and transverse strains

created by mandrelizing were explored in order to establish whether the




interior values of strain correlate well with surface values as established
by measurement or calculation.

Experimental three-dimensional strain fields can be studied by only a
few methods. fhe embedded grid moiré technique (5, for example) seemed most
appropriate for this problem. Such approaphés have been limited, however,
by the necessity of using only one embedded grid or grating. During the
course of this and related work,* the investigators discovered that several
interior gratings could be used and that each grating can be individually
observed and photographed even though other gratings might tend to obstruct
the view. Such a procedure yields individual grating replicas for each
interior and surface plane for each state of the specimen. These grating
photographs can then be processed to obtain moiré fringe patterns, and
those fringe patterns analyzed to obtain strain maps, using the optical and

computer procedures described by Cloud (1-4).
SECTION II

SPECIMEN FABRICATION AND MATERTALS SPECIFICATION

The materials used for this investigation included polycarbonate resin
and a mixture of flexible and rigid polyester resins. 1In the beginning
polycarbonate resin was used. A polycarbonate sheet obtained from the Mobay
Chemical Companv was cut into two rectangular pieces and a copper grating was
printed on onc of the surfaces. The blocks were then glued together to

form a specimen block with the copper grating at the midplane.

* This unique moiré method using multiple-embedded gratings for investi-
gating 3-dimensional strain fields was developed by the Principal Investigator
under National Science Foundation Grant ENG-7802530. It has not vet been
described in the technical literature. Details will be provided by the
Principal Investigator when requested.




Poisson's ration of polycarbonate is 0.45. The modulus of elasticity
as a function of temperature, and a typical stress-strain curve are shown
in Figure 1 and Figure 2, respectively. These data are from an Engineering
Handbook on Merlon Polycarbonate by the Mobay Chemical Company, Pittsburgh,
Pennsylvania (6).

A mixture of flexible and rigid polyester resins was used to make the
other specimens. D. H. Morris and W. F. Riley (7) show that a mixture of
60% by weight flexible MR-9600 (previously designated EPX-126-3) and 407
by weight Laminac 4116 can be used to predict the behavior of an aluminum
prototype. The Poisson's ratio was found by them to be 0.45. Their stress-
strain curves, which depend on strain rate, are reproduced in Figure 3.

These particular resins are now marketed by the USS Chemicals Division
of United States Steel, Polyester Unit. The 60:40 mixture by weight was
used. The two resins were first blended with 1% methyl-ethyl-peroxide cast
in an aluminum mold. Nickle mesh with 500 lines per inch (20 lines per mm)
and 0.0008 inches (0.0203 mm) thickness (marketed by the Buckbee Mears Company)
was retained at the center of the mold and the resin poured around it. The
resin was allowed to cure at room temperature for 24 hours. The partially
set specimen was then removed from the mold, left in an oven, and post-cured
at 80° C for 16 hours.

The dimensions of all the specimens used for this investigation are shown
in Figure 4-a. The hole with a diameter of 0.25 inches (6.35 mm) was
drilled and reamed at the center of the specimen for the coldworking process.
The fiducial marks were made by drilling a small hole 1/32 inches (0.794 mm)
in diameter on the grating line at a distance of 0.5 inches (12.7 mm) from
the center of the large hole as shown in Figure 4-b. All specimens were
polished to get a smooth and clear surface to let the light pass through

without scattering or deviation.




250.000

200.000 \

’MODULUS OF ELASTICITY, psi

150.000
100.000
50.000
0
~-80 -40 0 40 80 120 160 200 240
TEMPERATURE °F
Figure 1. Modulus of Elasticity versus Temperature.




=
e Aty B ¢ i

REAK

3.000

2,000

1,000

¢ o1 02 03 04 05 06 O7 08 09 10 12 13
STRAIN, IN./IN.

Figure 2, Stress-Strain Curve of Polycarbonate.




[

|

~

STRAIN RATE, (yin/in.Vsec

STRESS, byf

95
20
7

AR

'S A L L L I 1
¢ 2 4 P ) 10 12 4
STRAIN, %

Figure 3. Stress-Strain Curves as a Function of Strain Rate for a
60:40 Mixture of Laminac Polyester Resins (Ref. 5).




(a) 2.5" «— grating
“lines

K_ fiducial marks

(b) —o—(O—0—

TT—0.255 inch

diameter ;

Figure 4. Specimen Dimensions.




o ""

SECTION III

GRID DEPOSITION

It was found that the photoresist could not be used to make a grating on
the specimen surface because the grid would be destroyed when the other piece
was glued over it. Therefore, specimens with copper gratings inside were
used and gave fairly good results. In this study two methods, both described
in published literature (8,9,10), were used to make a copper grating.

With the etching method, after the specimen was cleaned, a thin film
of copper was deposited on the area of interest by using a Denton D.V.-502
High Vacuum Evaporator. The specimen was then sprayed with photoresist to
cover the thin copper film. The two-way grating was printed by using a sub-
master grating having 1000 lines per inch (40 lines per mm), and finally the
copper was etched with P. C. Board Etching Solution diluted with water 1:3
brushed one way. The specimen was then washed by water. This grating
application process is summarized in Figure 5.

The stencil method used a fine metal mesh with an orthogonal array
of holes. 1In this study nickel mesh with 500 lines per inch (20 lines per
mm) was used. First, a nickel mesh was held in close contact with a speci-
men by spreading soap solution over it and then removing the surplus with
filter paper. This removed the solution from the holes but left the mesh
secured by a thin liquid layer under the lines. The specimen and mesh were
placed in a vacuum unit, and copper was deposited through the holes of the

mesh. Finally, the nickel mesh was removed from the specimen.

SECTION IV

COLDWORKING

The coldworking procedure used was developed by J. 0. King, Inc.,
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711 Trabert Avenue, N. W., Atlanta, Georgia, 30318, and is described in the
following paragraphs.
A thin-walled sleeve which carries an anvil on one end is inserted
into the hole. A tapered mandrel is pulled through the hole to expand it
while the anvil of the sleeve is supported to oppose the pulling force
(see Figure 6). The mandrel enlarges the sleeve and expands the hole enough
to cause plastic deformation around the hole. The sleeve remains in the hole
but the anvil drops off. A machine incorporating a hand-operated hydraulic
cylinder was constructed to pull the mandrel in the laboratory. The tapered
mandrel used for this study had a maximum diameter of 0.2550 inches (6.4770 mm),
the sleeve had a 0.2350 inch (5.9690 mm) inside diameter, a 0.2540 inch
(6.4516 mm) outside diameter and was 0.0095 inches (0.2413 mm) in wall
thickness.
The mandrelizing and testing sequence was accomplished in steps as
follows:
l-a The tapered mandrel was pulled down until the top
of the mandrel was at the same level as the top surface
of the specimen.
1-b A grating photograph was recorded.
2-a The tapered mandrel was pulled down about 1/3 of the
thickness.
2-b A grating photograph was recorded.
3-a The tapered mandrel was pulled down about 2/3 of the
thicknéss.
3-b A grating photograph was recorded.
4-a The tapered mandrel was pulled out.

4-b A grating photograph was recorded.
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Figure 6. Schematic of the Coldworking Process.
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SECTION V

PHOTOGRAPH OF SPECIMEN GRATING

The specimen was polished to get smooth, clear, and parallel surfaces
which let light pass through it without scattering or causing optical
distortion of the embedded grating. The system devised for photographing
the specimen grating is shown schematically in Figure 7.

The camera used was a Tech/ops 4x5 bellows module. The lens was a
Schnieder Krueznach, Retinar-Xenar with a focal length of 50 mm and a maximum
aperture of 2.8. The system rested upon a granite optical table, and the camera
was set up to give a magnification factor of 4. The specimen was placed on
a specially designed holder. The light source for this work was a 150 W.
General Electric Reflector Flood.

The image of the specimen grating in the emulsion of a test photoplate
was examined with a Bausch and Lomb Optical Co. 10x magnifier, which had been
adjusted to focus in the emulsion plane. The image of the specimen grating
could be checked over the entire area near the edge of the hole along the

thickness of the specimen for maximum sharpness and contrast. Kodak High Speed

Holographic Film (S0-253, 4x5 in.) was used to take test photographs of the
specimen grating. After getting the best grating from Kodak film, the data 1
plates were made by using Kodak HIgh Speed Holographic Plates (Type 131-02,
4x5 in.). Five data plates were made for each specimen loading.
1. The specimen with no load; this data plate was used as a
base line to eliminate error which might be induced by
deformations created during fabrication of the specimen
as well as various optical distortions.
2. The specimen with the top of the mandrel at the same level

as the top surface of the specimen.

12
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3. The specimen with the top of the mandrel at 0.13 inches
(3.302 mm) from the top surface of the specimen.

4. The specimen with the top of the mandrel at 0.24 inches
(6.096 mm) from the top surface of the specimen.

5. The specimen without the mandrel (the mandrel was

pulled out).
SECTION VI

SUMMARY OF OPTICAL PROCESSING
The grating photography stages of this experiment produced an assembly
of photographic plates of the undeformed (baseline) and deformed (data)
specimen gratings as well as several submaster gratings having various
spatial frequencies. The creation of moiré fringe patterns and the reduc-
tion of moiré fringe data have been described in detail (1-4). The steps
required to produce moiré fringe photcgraphs from these grating records
were as follows:
1. A photoplate of the undeformed grid was superimposed with
a submaster grating having a.spatial frequency of 3 (sometimes
2) times the frequency of the magnified specimen grating plus
or minus a small frequency mismatch.
2. The guperimposed gratings were clamped together and placed
in a coherent optical processor and adjusted to produce a
correct baseline (zero strain) fringe pattern at the processor
output, where it was photographed.
3. Steps 1 and 2 were repeated with the photographs of the
deformed grating in order to create the "data" or "at strain"

fringe patterns.

14




4. The fringe patterns were enlarged and printed in a size
equivalent to about 8 times the actual specimen dimensions
with medium contrast.

5. The prints were sorted and coded for identification.

6. Computer digitizing, data reduction, and plotting were

performed on each photograph.

SECTION VII

EXPERIMENTAL RESULTS AND DISCUSSION

The nature of the coldworking operation is to exert a force perpendicular
to the specimen surface through the sleeve and thus create deformation of
the hole. The diameter of the hole along the thickness was measured from the
"unloaded" data plate and the "loaded" data plate (mandrel was passed through).
Table 1 summarizes these results. Plots of the diameter of the hole before
and after the load and the diametral expansions along the thickness of the
specimen are shown in Figures 8 and 9, respectively. The deformation result
shows that the hole is not uniformly expanded through the specimen by cold-

work, and that the specimen has a minimum diametral expansion near its center.

TABLE 1. DIAMETER OF HOLE BEFORE AND AFTER LOAD

Distance from Dia. of unloaded Dia. of loaded Diametral expansion
the top (in.) specimen (in.) specimen (in.) (in.)

0.000 0.2574 0.2708 0.0134

0.130 0.2563 0.2695 0.0132

0.240 0.2551 0.2679 0.0128

0.381 0.2564 0.2713 0.0149

Average 0.2563 0.2700 0.0137
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In this investigation the specimen has a two-way grating (that is, an
array of dots). By using the otpical processor, a moiré fringe pattern was
formed separately for each diréction. One pattern was formed to get vertical
fringes (the direction parallel to the hole), and this fringe pattern was
used to measure strain the the radial direction (the direction perpendicular
to the hole). The other pattern was formed with horizontal fringes (the
direction perpendiculaFAto the hole); fringes in this direction were used to
measure strain in the z-direction (the direction parallel to the hole). The
photograph of the fringe éattern was recorded separately for each direction
and for each loading step.

Photographs of the moiré fringe pattern obtained from the polycarbonate
specimen for the vertical and horizontal directions are shown in Figures 10
to 14 and Figures 15 to 16, respectively. Because the polycarbonate specimen
was found to be locally split along the grating plane after coldwork, the
moiré fringe patterns were not entirely valid for the region near the hole.
Because of the splitting that occurred, the analysis of the fringe data from
the polycarbonate specimen was not completed.

The photographs of vertically-oriented (from the vertical grating) fringe
patterns at each loading step obtained from the mixed polyester specimen
are shown in Figures 17 to 21. The strain on the left and right sides
at each loading step are shown in Figures 22 to 25 and Figures 26 to 29,
respectively. At the first step, the top of the mandrel was pulled down
to the level of the top surface of the specimen. The maximum expansion occurred
at the top of the specimen, as shown in Figure 18, because the shape of the
mandrel is a taper. The strain in the radial direction was measured to within
0.01 inches (0.254 mm) of the edge of the hole. The resuits show that the

largest strain occurred within 0.1 inches (2.54 mm) of the edge of the hole

18




.

-

i

Figure 10. Photograph of Moiré Fringe Pattern with No-Load on Polycarbonate
Test Specimen.
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Figure 11.

Photograph of Moiré Fringe Pattern with lst-Step Load on

Polycarbonate Test Specimen.
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Figure 12. Photograph of Moiré Fringe Pattern with 2nd-Step lLoad on
Polycarbonate Test Specimen.
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Figure 13.
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Photograph of Moiré Fringe Pattern with 3rd-Step Load on
Polycarbonate Test Specimen.
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Figure 14. Photograph of Moiré Fringe Pattern with 4th-Step Load on
Polycarbonate Test Specimen.
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Figure 15.
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Photograph of Moiré Fringe Pattern with No~Load of
Polycarbonate Test Specimen.
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Figure 16. Photograph of Moiré Fringe Pattern after Coldworking of
{ Polycarbonate Test Specimen.
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i Figure 17. Photograph of Moiré Fringe Pattern with No-Load on Test
Specimen of Mixed Polyester 60:40.




Figure 18.

Photograph of Moiré Fringe Pattern with lst-Step Load on
Test Specimen of Mixed Polyester 60:40.
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Figure 19. Photograph of Moire Fringe Pattern with 2nd-Step Load on
! Test Specimen of Mixed Polyester 60:40.
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Figure 20.  photograph of Moire Fringe Pattern with 3rd-Step lLoad on
Test Specimen of Mixed Polyester 60:40.
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Figure 21, Photograph of Moiré Fringe Pattern with 4th-Step Load on
Test Specimen of Mixed Polyester 60:40.
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DISTANCE FROM HOLE

Radial Strain at Different Planes Along the Thickness on Right Side

of Hole at 1lst Step.

Figure 26.
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Figure 29. Radial Strain at Different Planes Along the Thickness on Right Side
of Hole at 4th Step.




after the mandrel was pulled out. The strain is maximum at the top and
decreases towards the bottom as shown in Figure 22 and Figure 26. The shape
of the fringe line pattern obviously changes as the mandrel is pulled
through. From Figures 19 and 20, we can see a modification of the fringe
pattern near the top of the mandrel when the mandrel was pulled down for
each step (the position of the top of the mandrel is shown by the arrow).
When the tapered mandrel was pulled out, the strain on the bottom surface
was slightly larger than at the top, and the strains inside the specimen
were smaller than the surface strains, as shown in Figures 25 and 29,
because the diametral expansion was smaller than on the surface.

The strain in the z-direction for the polyester specimen was measured
from moiré fringe patterns to within 0.05 inches (0.13 mm) of the edge of
the hole after the tapered mandrel was pulled through and the sleeve was
still in the hole. The photographs of the moiré fringe p;ttern from the
horizontal grill (horizontal fringes) are shown in Figure 30 to Figure 34;
and the plots of the strain in the z-direction on the left side and the right
side of the hole are shown in Figure 35 to Figure 38 and Figure 39 to Figure
42, respectively. The results show that, after the specimen was loaded,
the fringe near the edge of the hole moved toward the midplane. The dis-
tance between the two fringes in the deformed specimen was smaller than the
corresponding distance for the undeformed specimen. At the top of the specimen,
the fringes near the edge of the hole moved toward the midplane, but the dis-
tance between the two fringes was slightly larger than in the unloaded case.
Such behavior occurs because the top laver of the specimen near the edge of
the hole is expanded. Unfortunately, the optical system could not record
a good enough grating near the bottom surface, and thus, the bottom surface

results could not be obtained because of a lack of fringe resolution. The
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Specimen of Mixed Polyester 60:40.

e e e

"‘"\mw

TO WY nagegiy . [ ""
‘Ou SNt o e gpl. vy o)
Ny - N SuisirAr s 0 1y PPy Setvetd

B o SRNPIINPs ~9POPN § ot TR Q¢
IRT 1og'S L SV

with No-Load on Test




Figure 31. Photograph of Moiré Fringe Pattern with 1lst-Step Load on
Test Specimen of Mixed Polyester 60:40.
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Figure

32.

Photograph of Moiré Fringe Pattern with 2nd-Step Load on
Test Specimen of Mixed Polyester 60:40.
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Figure 33. Photograph of Moiré Fringe Pattern with 3rd-Step Load on
Test Specimen of Mixed Polyester 60:40.




Figure 34, Photograph of Moiré Fringe Pattern with 4th-Step Load on
Test Specimen of Mixed Polyester 60:40.
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strain near the edge of the hole along the z-direction is tension near the

top surface, but it changes to a compressive strain farther than a few
millimeters from the surface. The strain increases to a maximum compressive
strain at about the midplane, decreases to near zero and then increases

to compression again as the bottom surface is approached. These changes

in sign result from the physical constraints of the process. When the
tapered mandrel is pulled down, the bottom surface is supported by an anvil,
and the area near the edge of the hole on the bottom surface cannot move
down. This constraint causes increasing compressive strain near the bottom
surface.

The strain in the z-direction along the thickness is compression
because the taper shape of the mandrel causes a compressive force in the
z-direction when the mandrel is pulled down. The maximum strain occurred
at about the midplane of the thickness. The vertical displacement near the
edge of the.hole results in a tension strain for only a thin layer near the
top surface. This result agrees with the experimental measurement of
the thickness change near the edge of the hole on the top surface of a
coldwork specimen by S. Poolsuk and W. N. Sharpe, Jr. (11) They showed
that the thickness near the edge of the hole on the top surface was expanded
after coldwork.

A plot of the strain in the z-direction verses distance from the edge
of the hole on the midplane of the fully coldworked specimen is shown in
Figure 43. The strain is maximum near the edge of the hole and then decreases
with increasing distance from the hole.

The tangential strain, or "hoop" strain, can be measured by using a
unique multi-plane specimen having embedded gratings. For this study,

polycarbonate was used to make a specimen. The specimen was made in a
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circular disk shape. It consisted of 3 pieces having different thicknesses.
Two of the disks had half the thickness of the third. The dimensions of the
specimen are shown in Figure 44. A copper grating was deposited on one
side of each of the thinner pieces by using the stencil method, then, all
three pieces were fastened together with epoxy (Epon 828 and Diethylene
triamine 100:8 by weight) by bonding a grating side to a plain side. The
resulting composite specimen had a copper grating on the quarter plane and
on the midplane. A hole with a diameter of 0.25 inches (6.35 mm) was made
at the center of the specimen. Finally a copper grating was deposited on the
top surface of the thinner piece. No grating was needed on the back surface
because, when the specimen was coldworked, the anvil would destroy the
grating around the hole. Before coldwork, the anvil was removed from the
sleeve and the flange that supported the anvil was trimmed to be as small
as possible in order to allow the light to pass through the specimen. This
was done so that a photograph of the grating on each plane close to the edge
of the hole could be made. The diameter of the flange of the sleeve was
a little bigger than the diameter of the hole.

The specimen set-up was almost the same as before, the difference
being that the specimen was placed on the specimen holder so as to let the
light pass through the specimen in the direction parallel to the hole. A
photographic process was developed so that each grating could be recorded
individually even though it might be obstructed by other gratings. The
first data plate was recorded by focusing on the surface grating. Then the
specimen was moved closer to the lens to get a focus on the quarter plane and
a second data plate was recorded. Finally the specimen was turned around, and
after focusing the grating of the midplane, the third data plate was recorded

A schematic of the specimen set-up is shown in Figure 45.
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Figure 44. Specimen Dimension,
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SPECIMEN CAMERA

LIGHT

Figure 45,

AV

L Wl

-TOP PLANE (COPPER GRATING)

_ QUARTER PLANE (COPPER GRATING)
L— MIDPLANE  (COPPER GRATING)

Schematic of the Photographic Data Recording.
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For this-study, the gratings with no-load and the gratings after
mandrelizing were recorded on High Speed Holographic Plate (Kodak Type
131-02, 4x5 inch) for each plane of the grating. The moiré fringe pattern
was extracted by using the optical processing technique. The photographs
of the moiré fringe pattern on each plane are shown in Figure 46 to Figure
48. The plots of the hoop strains (0.0455 in. from the edge of the hole
of the specimen before load) on each plane obtained from the moiré fringe
patterns are shown in Figure 49. The results show that the hoop strains
near the edge of the hole on each plane are only a little different. The
hoop strain on the surface is slightly larger than the others, and the
hoop strain on the midplane is the smallest. This agrees with the obser-
vation that the diametral expansion on the surface is slightly larger than

in the interior of the specimen as was shown in Figure 9.
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Fringe Pattern of Specimen Before and After Load

é
on Quarter-Plane.

The Moir

Figure 47.




Figure 48. The Moiré’Fringe Pattern of Specimen Before and After Load
on Mid-Plane.
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